

Tennix
Optimizing an open source
game for mobile devices

January 27th, 2009
Effiziente Programme WS08/09
Vienna University of Technology

Stefan Dösinger, Esad Hajdarevic, Thomas Perl

Properties

Open source game written in C using SDL

Different operating systems and processors

Graphics drawing

Not hardware-accelerated (software rendering)

(unfortunately) depending on hardware speed

Using an external library

Non-deterministic input (obviously – for a game)

Making it measurable: Benchmark-Mode (AI vs AI)

Speed partially subjective (smooth animations)

 Before Our Optimizations

Game runs fluently on commodity hardware

Mobile devices (Nokia Internet Tablets, N8x0)

Less CPU power and RAM

Energy consumption (running on batteries!)

Multitasking (allow background tasks, e.g. downloads)

Game does not run fluently on mobile devices

No profiling has been done yet

 Motivation And Goal

Playable, fluent game on mobile devices

Minimize energy consumption on PCs

Good multitasking citizen (sane FPS-Limit)

Carry out profiling; detect and fix bottlenecks

Goal: Tennix runs fine on N8x0 devices

 Adding Benchmark Mode

“disarm” the Random Number Generator

Initialization with known, constant value

No user interaction (AI versus AI mode)

Jump directly into the game loop (no menu)

Automatic exit after fixed game length (timelimit)

New command line switch:

./tennix -b

 Initial Profiling (oprofile)

CPU: Core 2, speed 1000 MHz (estimated)

Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit
mask of 0x00 (Unhalted core cycles) count 30000

samples % image name app name symbol name

1082617 73.4244 vmlinux vmlinux idle
330409 22.4087 libSDL-1.2.so.0.11.0 libSDL-1.2.so.0.11.0 /usr/lib32/libS..
9800 0.6646 oprofiled oprofiled /usr/bin/oprofiled
3515 0.2384 libfb.so libfb.so /usr/lib64/xorg/mo...
3371 0.2286 tennix tennix font_get_metrics

 Font Width Caching

Dynamic character width

“Terminating pixels”

Measure once and cache
results

Reason: Measuring has to
lock the SDL surface,
which is very costly

 Font Width Caching (Results)

Major improvements

More a bug than just slow: Expensive SDL calls
should not be put in the main loop if avoidable

 Font Width Caching (oprofile)

CPU: Core 2, speed 1000 MHz (estimated)

Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask of
0x00 (Unhalted core cycles) count 30000

Samples % image name app name symbol name
1919481 94.2060 vmlinux vmlinux idle
45567 2.2364 libSDL-1.2.so.0.11.0 libSDL-1.2.so.0.11.0/usr/lib32/libS...
15018 0.7371 oprofiled oprofiled /usr/bin/oprofiled
4742 0.2327 libfb.so libfb.so

/usr/lib64/xorg..
3646 0.1789 libqt-mt.so.3.3.8 libqt-mt.so.3.3.8 /usr/qt/3/lib...
3605 0.1769 Xorg Xorg /usr/bin/Xorg
3290 0.1615 oprofile oprofile /oprofile

 Avoiding Redraws

Some parts of the game screen are unchanged:

Referee, score display

Racket only changes when the user moves it

Optimization by avoiding redraws and re-using as
many already-drawn graphics as possible

 Avoiding Redraws (Results)

CPU: Core 2, speed 1000 MHz (estimated)

Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask of
0x00 (Unhalted core cycles) count 30000

samples % image name app name symbol name
2150031 94.9117 vmlinux vmlinux idle
42187 1.8623 libSDL-1.2.so.0.11.0 libSDL-1.2.so.0.11.0

/usr/lib32/libSDL..
16723 0.7382 oprofiled oprofiled

/usr/bin/oprofiled
3602 0.1590 libqt-mt.so.3.3.8 libqt-mt.so.3.3.8 /usr/qt/3/lib64
3592 0.1586 libfb.so libfb.so

/usr/lib64/xorg..
3580 0.1580 oprofile oprofile /oprofile
3435 0.1516 Xorg Xorg /usr/bin/Xorg

 Compiler Options

Known-good CFLAGS for TI OMAP 2420:

-mfpu=vfp -mfloat-abi=softfp
-mcpu=arm1136j-s

 Future Improvements

Micro-optimizations (as with mastermind.c)

but: Most of the CPU time in SDL → Library calls!

Threading

Increases code complexity without much
improvement; most useful on multi-core CPUs,
which handhelds are not (yet?)

pixel doubling (XOMAP X Server feature)

Would change the appearance of the game; only
possible on suitable hardware (N8x0, etc...)

 Energy Consumption

Rough measurements
with powertop, but
reproduceable

Less CPU time used,
CPU is longer in C3

About 2 W savings,
according to ACPI

Can we measure this
on N8x0 devices too?

 Conclusions

Most effective: fixing the “font width bug”

Avoiding redraws brings performance gains, but
makes code more complex

External libraries make profiling harder

Biggest potential for optimization here: drawing
on the surfaces (takes most of the time)

Small code changes could make a great impact
on game performance on N8x0 devices

 Used / Suggested Tools

codeviz (creating codegraphs)

ncc (Source Code Analyzer, “replaces” gcc)

oprofile (Linux Kernel Profiler)

powertop, top, time

gprof

qprof

git

 Example Callgraph

Presentation available at
http://icculus.org/tennix/files/effprog_200901.pdf

Tennix website and download
http://icculus.org/tennix/

http://icculus.org/tennix/files/effprog_200901.pdf
http://icculus.org/tennix/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

